COMPARISON OF ROGUE AND WILLAMETTE DAM OPERATIONS TO SUPPORT FISH OBJECTIVES

Willamette Fisheries Science Review Greg Taylor Fisheries Biologist Willamette / Rogue Project 06 Feb 2018

The Willamette River Basin

AUTHORIZATIONS

Rogue Primary Authorized Purpose of Project 1. Flood 2. Fish Willamette 1. Flood

unannunun

STORAGE

Rogue – Allocated

Willamette – Unallocated (WBR)

4

Portland District

Rogue – Coho (15 pg BA)

Wild STS, STW, Coho, Spring and Fall Chinook Willamette – Chinook, Steelhead, Bull Trout, Oregon Chub (Delisted)

FISHERIES RESEARCH

Rogue - 25 years (1975-2000)

Completion reports for CHS, CHF, STW, STS, Coho

Willamette – Research program established in 2008 following signed BIOP

OPERATIONS

OPERATIONS – RAMP RATES

0

	Rampdown / hr	Rampdown / 24
Rogue	150 cfs / 3 hr	.15 x outflow
Willamette	.1ft night / .2 ft day	.50 x outflow

SPAWNING AND INCUBATION FLOWS

2000 cfs 05/08/03 1200 cfs 06/24/03 850 cfs 07/23/03

Primary Fishery Objective	Potential Operations to Maximize Fisheries Benefit	Description of Biological Impacts / Potential Fisheries Benefits
Maximize	1) Without compromising flood control	1) Reduce scour of redds
survival rates	capability, decrease the intensity of peak	
salmon eggs	flows in the upper Rogue to the greatest	2) Promote emergence timing of spring
and sac-fry	degree possible.	chinook fry that is closer to historic timing thus
incubating in	The time	improving survival.
the gravel	2) Release the coldest water possible to	
	slow the development rate of spring	and the second s
	chinook salmon eggs and sac-fry in the	
	gravel.	A Martin Sale and a

MAINSTEM FLOW AND TEMPERATURE TARGETS

Rogue

Linked to specific fisheries objective based on research Flow used to meet temp targets and reduce prespawning mortality

Willamette

Mainstem and tributary targets to support spawning and incubation

RELATIONSHIP BETWEEN WATER TEMPERATURE AND RATE OF PRESPAWNING MORTALITY OF ADULT SPRING CHINOOK SALMON DOWNSTREAM OF GOLD RAY DAM

WATER TEMPERATURE (°C)

STRATEGIES EMPLOYED TO MINIMIZE COLUMNARIS LOSSES OF CHINOOK SALMON IN THE ROGUE RIVER

Release conservation storage from Lost Creek Lake to minimize losses in areas downstream of Gold Ray Dam

Release cold water from Lost Creek Lake to minimize losses in areas upstream of Gold Ray Dam

Structure releases of conservation storage, and cold water, to achieve most effective use during critical time periods

EFFICACY OF STRATEGIES EMPLOYED TO MINIMIZE COLUMNARIS LOSSES OF CHINOOK SALMON

Rates of prespawning mortality for fall Chinook salmon have not exceeded 10% since early 1980s (2001 excepted)

Rates of prespawning mortality for spring Chinook salmon have not exceeded 20% since 1994

USACE water temperature modeling and ODFW statistical assessments indicate that flow augmentation cools the Rogue River at Agness by about 1oC for every additional 1000 cfs released during critical periods for Chinook salmon

Side benefit of release strategies – extends potential rearing distribution of juvenile coho salmon (ESA listed) that rear in the Rogue River upstream of Gold Ray Dam

			ODFW	RECOMM	IENDATIC	NS FOR	RELEASES FR	OM LOST CREEK L	AKE		
	ASSUMES 180 KAF RELEASE DURING CONSERVATION SEASON										
ASSUMES 446KAF STORAGE ON 21 MAY											
						2	013 July update	e			
										ODFW	
									ASSUMED	target at	
		Average	Average			Chanç	je in	Reservoir	flow change	Agness	Reservoir
		Predicted	Proposed	Fishery	Flow	storage	(acre-ft)*	height at	LCD-	(max temp.)	volume at
Period	# days	inflow	release	Purpose	change	Period	Sum	period end	Agness	(min flow)	period end
May 1-10	10			a,b	0	0	0			660F	455,786
11-20	10			a,b	0	0	0			660F/670F	446,354
21-31	11			a,b	0	0	0			67oF	446,287
June 1-10	10			a,b	0	0	0			680F	420,805
11-20	10			a,b	0	0	0			680F/690F	399,798
21-30	10	0	0	a,b	0	0	0			690F	382,309
luk/ 1-10	10	1 213	1 500	ahf	-287	-6.070	-6.070				376 230
11_20	10	1 / 000	1,500	f	-207	-8 350	-14 420				367 880
21-31	11	1,000	1,500	f	-499	-11,308	-25,728				356,581
Aug. 4.40	10	004	1 500	£	500	11 740	27 420				244 074
Aug 1-10	10	931	1,500	T	-569	-11,710	-37,438				344,871
21.21	10	900	2,000	e,i	-1,100	-22,330	-59,768			2,000 crs	322,541
21-31		004	2,000	e,i	-1,110	-24,002	-04,030			2,000 015	297,009
Sept 1-5	5	862	2,000	e,f	-1,138	-11,710	-96,360			2,000 cfs	285,949
6-10	5	862	1,500	e,f	-638	-6,710	-103,070				279,239
11-20	10	855	950	d,e,f,g,h	-95	-2,230	-105,300				277,009
21-30	10	828	900	c,d,g,h	-72	-1,770	-107,070				275,239
Oct 1-10	10	826	900	c,d,g,h	-74	-1,810	-108,880				273,429
11-20	10	827	900	c,d,g,h	-73	-1,790	-110,670				271,639
21-31	11	859	900	c,d,g,h	-41	-1,232	-111,902				270,407
*Recent pla	ans assu	med that wa	ater temper	ature at Ao	oness wou	ıld not rea	ch 68oF until af	fter 1 June. This vea	r is warmer.		
'Plan assu	mes 1,00	0 acre-feet	lost monthl	y to evapo	pration after	er augmen	tation starts.				
Total rese	ervoir rele	ases (acre-	feet) under	r plan =	180,379						
STORAGE	ALLOC	ATION SUM	1MARY	CHS	72,478						
				CHF	66,530						
				JUVS	36,106						
				Sept/Oct	5,270						
ODFW FIS	HERY M	ANAGEME	NT OBJEC	TIVES AFI	FECTED E	BY RIVER	FLOW				
		IN PRIORI	TY ORDER								
a) minimiz	e nresna	wning mort	ality among	adult sprin	na chinook						
b) minimiz	e dewate	ring filling	nile salmoni	ds in sprin	a 2014						
(c) minimize	e dewate	ring of sprive	na chinook r	edds in 20)14 fillina a	eason					
(d) minimized	e early e	mernence h	v sprina chi	nook frv ir	n snrina 20	14					
(e) minimiz	e nresna	wning mort	ality among	adult fall o	hinook	, i -1 .					
(f) increase	e survival	rates of in	enile salmo	nids in sun	nmer.		17				
(a) minimiz	e the nro	portion of f	all chinook t	hat snawn	above Go	old Ray Da	am (site)				
(h) minimiz	e the effe	ects of flow	augmentati	on on the f	ly fishery	in the can	/on				

			RECOMME	ENDATIONS	FOR RELEA	SES FRO	DM DETRO	DIT LAKE			
				ASSUMES	75K RELEA	SE BY 1 S	SEPT (SPI	LLWAY CRI	EST)		
				A	SSUMES 428	3 K STOR	AGE ON 1	5 MAY			
		Average	Release	BIOP			Chang	e in	Reservoir		Reservoir
		Predicted		Target	Objective	Flow	storage	(acre-ft)*	height at		volume at
Period	# days	inflow				change	Period	Sum	period end		period end
Apr 1-15 *	15	2,900	1,750	1,500	e,g	1,150	34,155		1550.00		392,000
16-30 *	15	2,900	1,750	1,500	e,g	1,150	34,155		1561.00		420,000
May 1-15 *	15	2,900	1,750	1,500	c, e, g	1,150	34,155		1563.50		428,000
16-31 **	16	2,700	2,700	1,500	c, e, g	0	0				
Jun 1-15 **	15	2,200	2,200	1,200	a,b,c,d, e	0	0				
Jun 16-30 **	15	1,600	1,600	1,200	a,b,c,d, e	0	0				
Jly 1-15 **	15	1,100	1,200	1,200	a,b,c,d, e	-100	-2,970				
16-31 **	16	850	1,000	1,000	a.b.c.d	-150	-4.752				
Aua. 1-15 **	15	700	1.000	1.000	a.b.c. e	-300	-8.910				
16-31 **	30	650	1.000	1.000	a.b.c. e	-350	-20,790		1541.00		355.000
Sep 1-30 **	15	680	1.500	1.500	a.b.f	-820	-24.354				
Oct 1-15 **	16	840	1.500	1.500	a.b.f	-660	-20,909				
16-31				.,	-,-,-		,				
							-82,685				
							01,000				
*Release from	1 April -	15 May equ	als inflow -	1 150 cfs							
** Release from	m 16 Ma	v through 1	5 October e	quals inflow	or the BIOP	target (wł	nich ever is	higher)		Elevation	Storage
OBJECTIVES			=R			larget (m		nighter)	Power Pool	1 425	111 892
OBJECHVEC									Min Con Pool	1 450	148267
									Spillway Crest	1 541	355266
(a) maximize si	irvival of	iuvenile sori	ina chinook i	nassing dow	unstream thro	uah Detro	it Dam		Max Con Pool	1,563	428 754
(b) minimize ea	rlv emer	gence by sr	ring chinook	fry and late		of steelhe	ad fry			1,000	420,704
	enawnir	genee by sp na mortality	among adult	spring ching	nok		auny				
(d) increase su	rvival rat	es of invenil	e salmonids	in summer	00K.						
(e) minimize de	watering	of winter st	teelhead rec	In summer.							
(f) minimize dev	vaterina	of spring ch	inook redds								
(a) minimize de	watering	of invenile	salmonids in	spring							
(9) Thin in the CO				Spring							
					18						
							1 983 ac f	ft/cfs			

SUMMARY

Rogue

Used a long term monitoring data set to refine project operations to meet fisheries objectives

Willamette

RME program designed to inform questions that guide implementation of BIOP actions

Differences in application of ramp rates, spawning flows, flood damage reduction operations, flows to support adult migration and reduce prespawning mortality,

Rogue - fisheries objectives are prioritized and shape releases of conservation storage, shape of hydrograph is the same, but magnitude of releases change based on annual water supply. Use flow to meet temperature targets to reduce prespawning mortality. In season changes tracked with spreadsheet model to assess tradeoffs of early and late season operations.

Willamette – mainstem flow targets (change slightly based on annual water supply), tributary targets to support spawning and incubation. Targets recognized lack of knowledge on limiting factors. Objectives not prioritized...difficult to track tradeoffs of early and late season operations.

